
1 / 48 2011-03-12 01:19:40

Novelang
The electronic document generator

Written by Laurent Caillette
Version 0.56.0

Introduction

Novelang transforms text files, written with a wiki-like syntax, into nicely-formatted

documents like PDF or HTML, using customizable stylesheets. Novelang targets professional

writers who need to focus on the content, letting the automated rendition do the boring job.

Novelang retains the spirit of compiler-based development tools, where the machine performs

all possible validations before producing the final output. Novelang’s unique fine-grained

parsing grabs text details like parenthesized blocks or punctuation, and enforces consistent

structure and rendering.

Novelang is a project started by Laurent Caillette, a Java architect who believes in the power

of simple, reliable tools. You can mail him on Users mailing list or leave a comment on the

Novelang blog (see links).

Novelang software is free to use and redistribute, under the terms of the GNU Public

License v3.

Quickstart

Requirements: Java 6.

First, download the latest version of Novelang, and unzip it in some directory we’ll call

$NOVELANG_HOME.

First document

Just create a file with your favorite text editor and name it hello.novella. Content could

look like this:

Hello, world!

Run!

Then, from the directory where the file is located, launch the Novelang dæmon:

java -jar $NOVELANG_HOME/lib/Novelang-bootstrap-$VERSION.jar httpdaemon

2 / 48 2011-03-12 01:19:40

Open your favorite Web browser at this address: http://localhost:8080/hello.html

And you should see your text, with correct formatting! Even more: the same source text may

render to a PDF document: http://localhost:8080/hello.pdf

Rationale

There are plenty of means to produce electronic documents and Novelang comes at the end

of a long way across through various solutions.

WYSIWIG word processors

Their main problem is also their primary feature: they mix presentation with content. While

this makes multi-format rendering horribly difficult, this also cripples the act of writing, making

people focus on how the text appears instead of what it means.

WYSIWIG publishing tools

Those tools, like XPress and InDesign, are fine for high-end publishing with ultimate control

of every aspect of how the document looks like. But they’re definitely not content-oriented.

LaTeX

LaTeX got it right. It is based on plain text with simple markup and a powerful macro system.

It exists from 20 years and is incredibly mature now.

Why not using LaTex? The markup is too verbose, it accepts macro language inside the

content, and it’s uneasy to setup. But if you have complex typography to automate (like for a

book about mathematics) and skilled writers, it’s definitely the right tool.

DocBook

DocBook is a semantic XML-based markup for technical documentation. It has many great

ideas (Novelang borrows some of them) but fails to cover every case and is really too verbose.

And it lacks an off-the-shelf solution.

Wiki

Wikis are a family Content Management Systems aiming at creating Web sites quickly. They

rely on a simplified markup which can get incredibly productive. There is a lot to say about

their syntax.

(See an overview of various wiki systems. See some interesting discussion about wiki

syntaxes on Markdown and Wiki Creole and Coding Horror.)

Alas, wiki solutions don’t care a lot about supporting accurate typography and most of them

don’t generate decent PDF.

http://localhost:8080/hello.html
http://localhost:8080/hello.pdf
http://www.latex-project.org
http://www.docbook.org
http://www.wikimatrix.org
http://daringfireball.net/projects/markdown/syntax
http://www.wikicreole.org/wiki/Reasoning
http://www.codinghorror.com/blog/archives/001116.html

3 / 48 2011-03-12 01:19:40

Finally…

Novelang came after a pair of prototypes.

— One using Apache Forrest and DocBook.

— The other basing on Xilize, which transforms a Wiki-like syntax into XHTML, and Flying

Saucer which generates PDF out of XHTML.

The Forrest-based solution supported document preview through a Web browser, which is

incredibly productive. It also supported document fragment inclusion. The Textile-based one

had a much more pleasant markup. So it seemed a good idea to start a project mixing the best

of both worlds, with a tighter and cleaner syntax.

Frequently asked questions

Is there a chance to see a WYSIWYG editor for Novelang?

WYSIWYG (What You See Is What You Get) doesn’t make much sense when output may

occur in multiple formats. The closest thing that Novelang could offer is some plugins and

configuration files for popular text editor supporting custom syntax highlighting.

Why so many versions?

Delivering by small increments makes bug detection and analysis easier. Novelang’s

automated release process makes easy and cheap to deliver a lot.

Is Novelang good enough for production?

Sure it is. The author is using it daily to dump the mess out of his mind.

How unit-tested is Novelang?

Each new version passes more than 700 non-regression tests.

Who’s using Novelang?

Less than 3 people in the world.

Will Novelang become a commercial product?

The market is already full of content management systems and wiki stuff, so Novelang would

have very low visibility. There are better chances to sell customization service. But monetization

is not a priority.

Default PDF stylesheet is ugly. Any chance to fix this?

Yeah. This will occur one day.

XSL sucks. Is there another mean to define stylesheets?

Yeah it sucks but it offers a single, well-documented mean to support various rendition

formats. Using XSL out-of-the-box helps to focus on other topics, like defining a correct syntax

for source documents. In the future, Novelang may support a dedicated language, probably

based on Clojure. There are already some interesting libraries for XML and HTML.

FO sucks. Is there any other mean to generate PDF?

FO is great for a certain kind of documents with simple and precise layout. FO handles

hyphenation, page references to page numbers, various stylings, that are very complicated to

http://forrest.apache.org
http://xilize.sourceforge.net
https://xhtmlrenderer.dev.java.net
https://xhtmlrenderer.dev.java.net
http://richhickey.github.com/clojure-contrib/prxml-api.html
https://github.com/mmcgrana/clj-html

4 / 48 2011-03-12 01:19:40

make working when put together. So FO is here to stay. Please note that lot of FO ugliness

comes from the XML syntax for writing XSL stylesheets.

What about supporting more character sets?

Because Novelang’s grammar is very strict, it requires some changes to support new

characters. Those will be added at user’s request (already happened for Hungarian).

Release notes

Version number has the “Major, Minor, Fix” form. Before Novelang reaches version 1.0.0,

a change in “Minor” means a new feature. A change in “Fix” means a bugfix, while retaining

compatibiliy with documents and stylesheets.

Release notes do report when there is a possible compatibility break with existing documents

and stylesheets.

0.56.0

— Added Romanian characters, as listed on Wikipedia. This includes diacritics made

obsolete by the spelling reform of 1904, minus the d/D letter with a comma below, for which

Unicode offers no precomposed characters.

0.55.0

— New --temporary-dir option. For better error messages, Novelang now buffers the

whole document before sending it to the HTTP client. When the document is too big Novelang

buffers it into a temporary file under this directory. If an error occurs then its not too late to

send an HTTP redirection.

— Fixed SVG embedding for PDF. Now the image appears as true vector image inside the

PDF. Correct reference to the SVG resource implied adding a $content-directory parameter

passed to XSL stylesheets.

— Fixed loss of request parameters when issuing error page.

— Less verbose logging of Logback configuration at startup.

— Fixed various cases of bad problem reporting, where location in origin file was missing.

— Plenty of other small fixes.

0.54.0

— Because of some cleanup, n:relative-identifier becomes illegal in stylesheets

(wasn’t generated since a few versions). This might break a few existing stylesheets.

— Better logging of accessed resources.

— Documentation enhancements.

http://en.wikipedia.org/wiki/Romanian_alphabet

5 / 48 2011-03-12 01:19:40

0.53.6

— Fixed resource loading bug appeared in 0.53.5, that caused to ignore overriden resources

(like stylesheets).

0.53.5

— Various logging enhancements.

— Various enhancements to the documentation.

— Disabled full parsing and validation for SVG files.

0.53.4

— Fixed logging configuration with --log-dir option.

0.53.3

— Fixed barcode generation.

— Minor logging enhancements.

0.53.2

— Indicating error location when something goes bad during XSL transformation.

— Minor fixes on HTML documentation.

0.53.1

— Minor cosmetic changes for HTML generation.

0.53.0

— Experimental support for Multipage. See the result in Novelang documentation.

— Small logging enhancements.

— More restrictive rules when applying XSL stylesheets. Generation now breaks on

warnings. This might break existing incorrect stylesheets.

— Changed default representation of Fragment Identifiers, both Implicit and Explicit.

Removed leading double reverse solidus \\ when rendering (still required in document sources).

0.52.0

— Added n:block-inside-asterisk-pairs. Default stylesheet render it as bold.

0.51.1

— Upgraded from FOP-0.95 to FOP-1.0. FOP is the library for generating PDF documents.

http://xmlgraphics.apache.org/fop/1.0/releaseNotes_1.0.html

6 / 48 2011-03-12 01:19:40

— Various other library upgrades that shouldn’t affect normal users.

0.51.0

— Fixed: list with double hyphen and number sign was using a “plus sign” everywhere

(source documents and XML elements). This might break existing documents and stylesheet

using this brand new feature.

0.50.2

— Fixed: support paragraphs as lists (n:list-with-triple-hyphen and n:list-

with-double-hyphen-and-number-sign) inside n:paragraphs-inside-angled-bracket-

pairs.

0.50.1

— Minor fix on JavaShell for cleaner shutdown when there is no default JmxKit. This only

may affect users of Novelang-attirail subproject.

— Fixed documentation generation where release notes for SNAPSHOT versions appeared

for non-SNAPSHOT versions.

0.50.0

— Embedded numbered lists (n:embedded-list-with-number-sign).

— Paragraphs as numbered lists (n:list-with-double-hyphen-and-number-sign).

— Switched to Maven 3. This required no change but future build features may not work

with formerly-used Maven 2.2.1.

0.49.0

— In default stylesheet for HTML and PDF, the first n:cell-row element renders as a table

header, if there is more than one. This might break existing documents.

0.48.0

— Fixed startup option in documentation.

— Tags and location for lines of literal. Required an intermediate n:raw-lines element

nested inside n:lines-of-literal. This might break existing stylesheets.

— Location for cell rows with vertical line.

0.47.0

— Feature removal: relative identifier. Never used, and would make multipage rendering

much more complicated.

— Small enhancements to Novelang-attirail, the reusable library.

http://novelang.blogspot.com/2010/09/technical-study-multi-page-html.html

7 / 48 2011-03-12 01:19:40

0.46.1

— Added source packaging for Novelang-attirail subproject.

0.46.0

New experimental features for code reuse:

— Novelang-attirail subproject aggregating various tools. It’s not part of standard

distribution, by now it requires separate rebuild.

— Pluggable logging implementation.

— Java code all under org.novelang package (was novelang).

0.45.0

— Added Greek and Polish characters to the grammar.

0.44.5

— Fixed release notes generation.

0.44.4

— Fixed a few references to old “Part” and “Book” terms, and file suffixes as well.

0.44.3

— Fixed Nhovestone report generation.

0.44.2

— Another fix for a build problem. Now the deploy:deploy goal should work properly

when called from release:perform.

0.44.1

— Fixed build problem when deploying files and sending annoucements.

0.44.0

— Renamed Part into Novella and Book into Opus. Nicer, clearer. New recommended file

suffixes are .novella and .opus. Old .nlp and .nlb suffixes still supported.

— Switched build system from Ant to Maven. Because all jars stand in the lib directory,

this impacts the command line for launching Novelang.

8 / 48 2011-03-12 01:19:40

0.43.0

— Added nohead option to insert command.

— Fixed some bugs around identifiers.

— Introduced detection of colliding explicit identifiers. This has no useful purpose for now

but will serve as a basis for implementing internal links.

— Small performance enhancement on HTML document rendering in a Web browser: don’t

use JavaScript to set collapsible descriptors hidden.

0.42.0

— Now requires Java 6.

— New Nhovestone report: Novelang has its own benchmark!

— Added stylesheet html-FR.xsl for French punctuation.

— Performance enhancement on rendered HTML page: when containing many tags it should

load faster. Instead of dynamically computing styles on the Web browser, HTML rendered by

the server directly includes those styles.

— Various performance enhancements on document generation. With the same amount of

memory (-Xmx parameter), Novelang handles documents twice bigger and serves them 20 %

faster than previous version. Benchmark ran against version 0.41.0 and 0.38.1. This includes

buffered reading of Part files, multithreaded Part rendering, and reduced memory consumption

when dealing with AST (Abstract Syntax Tree).

0.41.1

— Fixed bug with Promoted Tags, not detected under some circumstances.

0.41.0

— New feature: Promoted Tags. Implicit Tags matching Explicit Tags become Promoted

Tags.

— Support lines of literal inside paragraphs inside angled bracket pairs.

— Minor enhancements on HTML default stylesheet.

0.40.1

— Fixed display bug on generated documentation.

0.40.0

— Brand new stylesheet for HTML.

0.39.2

— Reject diacritics in tags.

http://novelang.sf.net/nhovestone.pdf
http://novelang.sourceforge.net/nhovestone.pdf

9 / 48 2011-03-12 01:19:40

— Filter on implicit tags as on explicit tags.

0.39.1

— Fixed documentation generation.

0.39.0

— Experimental feature: descriptors in default HTML stylesheet.

— Support Unicode files starting with a BOM (Byte Order Mark).

— Reject TAB character.

— Display Unicode name of a rejected character (as long as it belongs to the set of 16 bit

Unicode characters as defined in Unicode 5.2 standard). This feature is experimental and may

wreck existing error messages.

0.38.1

— Fixed occasional crash caused by Implicit Tags.

0.38.0

— Experimental support for Implicit Tags, deduced from level’s title.

0.37.0

— Experimental support for Implicit Identifiers, deduced from level’s title. See “Identifiers”

chapter in Part syntax.

0.36.0

— New --style-dirs command line parameter (superceding --style-dir) for multiple

style directories.

— Minor identifier-related fixes and internal refactorings.

0.35.0

— Experimental support for identifiers. See “Identifiers” chapter in Part syntax, and “Insert

Command” in “Book Files”.

0.34.1

— Fixed: bug preventing from starting a Novelang release with a numbered version.

0.34.0

— New levelabove option for insert book command.

http://novelang.blogspot.com/2009/12/descriptors-in-html.html
http://unicode.org/faq/utf_bom.html#BOM

10 / 48 2011-03-12 01:19:40

— New sort option for insert book command.

— New explodelevel batch command for splitting one document’s levels into several parts.

— New --content-root command line argument for setting the directory where content

files reside.

— Fixed: paragraph as list did not support indented embedded list items.

0.33.1

— Enhanced error reporting when parsing an ill-formed Book file.

— Added automatic whitespace between punctuation sign or various blocks, and leading

apostrophe.

0.33.0

This version introduces changes that may break existing documents and startup scripts.

— New document extension .fo, for debugging FO stylesheets.

— Removed the dollar sign $ from Book syntax.

— Removed section command from Book syntax. No remplacement planned in the short

term.

— Removed title command from Book syntax. Use document parametrization instead (see

how Novelang documentation works).

— Renamed --serve-localhost-only to --serve-remotes and removed the boolean

argument.

— Fixed some bugs. Books now scan a directory correctly when recurse option is not set.

0.32.1

— Fixed --serve-localhost-only command-line option: now works with IPv6.

0.32.0

— New --serve-localhost-only command-line option for HTTP dæmon.

— Minor fixes around block after tilde. They may appear in blocks inside hyphen pairs.

— Minor enhancements to build script: Automated blog posting for a new release. Display

version number in documentation.

0.31.1

— Minor fixes around block after tilde. They may appear inside embedded lists and block

inside solidus pairs.

— Better handling of automatic space addition.

— Now character table contains decimal values.

11 / 48 2011-03-12 01:19:40

0.31.0

This version introduces changes that may break the rendering of existing documents.

— New feature: Block after tilde. This supercedes proximity rules for blocks inside grave

accents and blocks inside grave accent pairs.

— Fixed some minor bugs occuring under Windows®.

0.30.0

— Bug fixes: Handle more URL: HTTPS, non-standard query parameters. Fixed

disappearing whitespace between word and block inside grave accents, when inside level title

or embedded list.

— Minor enhancements: Better sizing of embedded lists with default CSS. Documented

some Windows tips. Added registration sign and copyright sign as supported characters in

source documents.

0.29.0

This version introduces changes that may break existing documents.

— Better handling of spaces inside blocks of literal (trimming, collapsing, replacing by no-

break spaces).

— Consecutive blocks of literal get a zero-width space automatically inserted inbetween.

— When a block of literal inside grave accents is immediately preceded/followed by a word,

a zero-width space gets automatically inserted inbetween.

— In case of a word starting/ending with an apostrophe, the rendering adds a whitespace to

separate from the preceding/following word.

— Added the color palette editor

0.28.0

— Tag-based document filtering supported in URL parameters (tags=tag-1;tag-2). This

is faster than JavaScript-based one, and makes the feature available to PDF and other formats.

— Report line number in case of unclosed block delimiter.

— Better logging: more concise messages, added some missing stuff.

0.27.1

— Fixed MIME type of documents served by HTTP dæmon.

0.27.0

— Experimental support for tag-based document filtering with default HTML stylesheet.

This is purely Javascript-based (runs all in the browser) and performance are disastrous on big

documents.

http://novelang.blogspot.com/2009/05/pretty-color-palette-for-tags.html

12 / 48 2011-03-12 01:19:40

— Fixed minor parsing bugs around URL.

0.26.0

This version introduces changes that may break existing stylesheets.

— Introducing tags: content annotations.

— Fixed some grammar bugs with URL, embedded lists and various line break

configurations inside non-symmetrical delimiters (pairs of solidus, double quotes, hyphen

pairs).

— Default stylesheets moved to top level (no more style/default directory). The default

word becomes the prefix (it was formerly the suffix) so html-default.xsl is now default-

html.xsl.

0.25.0

This version introduces changes that may break existing stylesheets.

— Simpler URL naming: no longer requires a line break preceding the block containing

URL name.

— As a consequence, n:external-link becomes n:url; n:url becomes n:url-

literal; n:link-name becomes n:block-inside-double-quotes or n:block-inside-

square-brackets.

0.24.0

— Experimental support for embedded lists: hierarchical lists inside paragraphs.

0.23.0

— Named URL.

— n:url element gets wrapped into n:external-link.

0.22.0

This version introduces changes that may break existing documents and stylesheets.

— Fixed: Book now display images correctly.

— Fixed: Safari 4 did not render SVG resources when referenced from HTML document.

— Fixed: HTML document now aware of SVG image dimension.

— Slight change: n:pixel-width and n:pixel-height become n:image-width and

n:image-height, with measure unit if available. For raster images, it is always px unit.

0.21.0

— Experimental support for raster and vector images. Known limitation: only works for

Parts.

13 / 48 2011-03-12 01:19:40

— Fixed argument parsing of batch argument generator (reported by Lmre).

0.20.0

— Tables! See part syntax for details.

— Documentation now lists all characters allowed in a source document (see at the end).

— Default stylesheet are now modular: all logic is contained by bundled [pdf,html,nlp]-

default.xsl while the stylesheet taken where no stylesheet name is specified remains

[pdf,html,nlp].xsl. This makes possible to override defaults without specifying a new

stylesheet name.

0.19.0

— Default charset for source documents is now UTF-8.

— Every character may be escaped using its Unicode name.

— Batch document generator.

— HTTP dæmon now started with additional httpdaemon command name.

The new command-line syntax now is:

java -jar ...novelang-VERSION.jar httpdaemon <options>
java -jar ...novelang-VERSION.jar generate <options>

0.18.0

— Experimental support for custom charset for both source and rendered documents.

0.17.0

This version introduces changes that may break existing documents and stylesheets.

— Renamed n:level-description to n:level-title.

— Unlimited level nesting.

0.16.0

This version introduces changes that may break existing documents and stylesheets.

— Brand new naming scheme for syntactic nodes!

— Chapters and sections don’t exist anymore. All what stylesheets will see are “levels”.

— Top-level delimiter (formerly “chapter”) in Part now starting with two equal signs ==

instead of three asterisks.

— Character escape now basing on Unicode name, plus optional HTML entity name.

— Option createchapter of the insert command renamed to createlevel.

14 / 48 2011-03-12 01:19:40

0.15.0

— Stylesheets containing XPath expressions relative to non-existing grammar token are

detected and rejected.

— Added new stylesheet: html-source.xsl. It generates HTML source in HTML with

special markup highlighted. This is especially useful for posting raw HTML on Blogger while

editing the text with Novelang!

— ANTLR grammar refactoring continues, now tokens and supported characters are

described in Java code generated from the grammar.

— Fixed: Font list regression, now displays all characters as in Novelang-0.13.0.

— Fixed: now some broken Part causes the whole Book document generation to fail when

it’s a recursive include.

0.14.0

— Refactored ANTLR grammar for supporting some planned features. Known regression:

some useful characters missing from font list.

0.13.0

— Better detection of text inconsistencies (lexer now reports problems).

— Enhanced font list: doesn’t break where there are no custom font at all.

— Cleaned up samples directory: most of stuff here was for tests, that moved to src/test-

resources.

0.12.0

— Enhanced font list: looks better, displays more useful characters, reports broken fonts.

— The timestamp parameter passed to stylesheet is no longer of java.lang.String type,

now it is a org.joda.time.DateTime for more formatting options.

— Option createchapters of the insert function renamed to createchapter as it is no

longer limited to recursive addition; now it applies to single-part insert.

0.11.0

— Multiple font directories. No longer need to give special names to font files (internal name

recognized automatically).

— Normalized command-line arguments, no more system properties.

— No longer need for font-metric files.

0.10.0

— Barcode generation in PDF with Barcode4J.

— Fixed character escaping with HTML.

http://barcode4j.sourceforge.net/2.0/fop-ext.html

15 / 48 2011-03-12 01:19:40

0.9.0

— Custom fonts for PDFs.

— Hyphenation for PDFs.

— New $style parameter for the insert function.

— Superscript.

— XSLT extension: plain text numbering. See chapter on custom stylesheets.

— Fixed import bug when using punctuation-FR.xsl.

— Documentation updates.

0.8.0

— Directory listing.

— New --port option for HttpDaemon. Useful when default TCP port (8080) is busy.

— Fixed mispelling of “literal” (was “litteral”).

— Plenty of bug fixes.

0.7.0

— Enhanced literal and character escaping.

0.6.0

— Multiple stylesheets.

0.5.0

— First public release.

Architecture

Novelang runs as a batch tool, or as an HTTP dæmon. Both use the same engine, passing

URL-like requests (like /doc/Novelang.pdf).

The rendition of a document occurs through 3 mains stages:

- Source parsing.

- Tree mangling.

- Rendering.

Source parsing

Source parsing is about reading a source files into an AST (Abstract Syntax Tree). The AST

is made of nodes with a text payload, an optional type label, and zero or more children.

The parser relies on ANTLR-generated code.

http://antlr.org

16 / 48 2011-03-12 01:19:40

Source parsing occurs in parallel when a single Opus file includes several Novella files.

Tree mangling

The tree mangling reorganizes the AST before rendering. This occurs in many steps.

Some of those steps are:

- Integrating double-quoted text as n:url-literal inside n:url nodes.

- Building hierarchies for levels and lists.

- Finding identifiers and detecting identifier collisions.

Rendering

Rendering converts the AST to a human-readable format, like PDF or HTML. There is a

built-in renderer relying on XSL but as the Renderer is basically a function taking an output

stream and an AST as input parameters, rendering can occur in virtually any format.

split the document into multiple pages (through a customizable stylesheet).

Statelessness

Novelang applies many features of functional programming. Most of Novelang’s internal

components don’t retain any state past initialization. Most of data structures are immutable,

especially the AST. (This required to develop specific algorithm to deal with immutable trees.)

Because Novelang’s code avoids unnecessary side-effects, this greatly improves its inherent

stability.

Directory layout

Novelang searches all its files in various directories. There are options to customize those

directories, but it’s convenient to know about the defaults.

Typical layout of a Novelang project looks like this:

17 / 48 2011-03-12 01:19:40

/
 opus.opus <- Opus file
 style/ <- Directory containing styles
 pdf.xsl <- A stylesheet file
 html.xsl
 fonts/ <- Fonts directory
 Garamond.ttf
 Garamond.bold.ttf
 Garamond-bold-italic.ttf <- a font file
 Garamond-italic.ttf
 developer-manual/
 chapter-1.novella <- A Novella file
 chapter-2.novella
 chapter-3.novella
 hyphenation/ <- Hyphenation directory
 en_US.xml <- Hyphenation definition
 hyphenation.dtd <- Mandatory file
 user-manual/
 chapter-1.novella
 chapter-2.novella

General syntax

Novelang recognizes Novella files with the .novella suffix. Novella files are plain text

files, containing pure textual content, plus a limited amount of decorations to help Novelang to

structure the text prior to rendering.

Here is a valid Novella file. It should look familiar to people who know wiki syntax:

== Title of level 1

This is a first paragraph on
two lines.

This is a `block of literal#@&)` inside a paragraph.
//This other block will show in italics//.

=== Title of level 2

<<
This is a quoted paragraph.

This is a second quoted paragraph.
>>

See? Decorations look “imaged” like ASCII emoticons. Equal signs figure indents for the

title level, and angled brackets look like opening/closing quotes. Unlike with HTML or LaTeX,

it’s easy to read a Novelang source document.

Novelang makes a great effort for making its grammar consistent. Before a detailed

presentation of all available decorations, here are the fundamental notions to deal with.

18 / 48 2011-03-12 01:19:40

— Paragraphs. The central notion of Novelang’s Novella grammar is the paragraph. A

paragraph is a sequence of textual items kept together because there is no more than one line

break at a time. So a paragraph cannot contain two consecutive line breaks, or it would be split

in two paragraphs. Paragraphs mainly contain words, punctuation signs, blocks, list items and

external links.

— Blocks. A block is a subset of a paragraph (for things like text in parenthesis). Blocks

may contain blocks. Because blocks occur only inside paragraphs, they cannot contain two

consecutive line breaks.

— Literal. Literal is text with uninterpreted characters. Novelang supports several kinds of

literal, whether it is inside a paragraph or outside.

— Levels. A level is a hierarchical container, that carries meaning about text structure. Levels

represent things like chapters and sections.

Detailed syntax

Now let’s discover all decorations supported by a Novella.

Along with their syntax is given the XML element names usable in a XSL stylesheet. Names

may seem weird at the first glance. A block inside two pairs of solidus // is called n:block-

inside-solidus-pairs. Why not calling it simply “italics”? First, keep in mind that those

XML names only appear inside custom stylesheets so you may not care about them at all.

Novelang transforms the source document in an abstract tree before rendering it through a

stylesheet. If you create your own stylesheet you can process a block inside // like a footnote

in super-bold or whatever, then “italics” would be quite confusing. So XML element names

don’t try to carry assumptions about the usage of the element. It just describes the originating

decoration.

Paragraph, regular

XML element: n:paragraph-regular

A regular paragraph is made of contiguous lines of text (two consecutive line breaks cannot

occur inside a paragraph). A paragraph may contain words, punctuation signs, external links,

list items and blocks.

With Novelang default stylesheet, such text is rendered as normal text:

First
paragraph.

Second paragraph.

Levels

XML elements: n:level, n:level-title

Levels are delimited with a simple syntax, using a separator = telling about the depth of the

level. A Novella contains up to three levels, including level 0 which is the default.

19 / 48 2011-03-12 01:19:40

Considering a Novella like this:

Text at depth 0.

== Depth 1

Introductory text.

=== Depth 2

Blah blah blah.

=== Depth 2

Blah.

== Depth 1 again

=== Depth 2

...

The level structure of the Novella looks like this:

+ n:novella
 + n:paragraph-regular "Text at depth 0"
 + n:level
 | + n:level-title "Depth 1"
 | + n:paragraph-regular "Introductory text."
 | + n:level
 | | + n:level-title "Depth 2"
 | | + n:paragraph-regular "Blah blah blah."
 | + n:level
 | + n:level-title "Depth 2"
 | + n:paragraph-regular "Blah."
 + n:level
 + n:level-title "Depth 1 again"
 + n:level
 + n:level-title "Depth 2"
 + n:paragraph-regular "..."

As explained later in this document, the depth of levels may be changed (increased) at Opus

level. This is useful for creating documents which have great depth, while keeping edited content

with at reasonable depth.

Inside a Novella, it’s incorrect to declare a first level with a greater depth than following one.

The case below will cause an error:

== Depth 2, incorrect

=== Depth 1

Block inside solidus pairs

XML element: n:block-inside-solidus-pairs

20 / 48 2011-03-12 01:19:40

Two pairs of solidus // may enclose a block of text.

With Novelang default stylesheet, such text is rendered as italics:

There are //italics//.

Block inside asterisk pairs

XML element: n:block-inside-asterisk-pairs

Two pairs of asterisk ** may enclose a block of text.

With Novelang default stylesheet, such text is rendered as bold:

This is **bold**.

Block inside double quotes

XML element: n:block-inside-double-quotes

Two double quotes " may enclose a block of text.

With Novelang default stylesheet, such text is rendered inside double quotes (the character

may vary depending on the language):

There are "double quotes".

Block inside square brackets

XML element: n:block-inside-square-brackets

Two pairs of square brackets [and] may enclose a block of text.

With Novelang default stylesheet, such text is rendered inside square brackets:

There are [square brackets].

Block inside parenthesis

XML element: n:block-inside-parenthesis

Two pairs of square brackets (and) may enclose a block of text.

With Novelang default stylesheet, such text is rendered inside parenthesis:

There are (parenthesis).

Block inside hyphen pairs

XML elements: n:block-inside-hyphen-pairs, n:block-inside-two-hyphens-then-

hyphen-low-line

Two pairs of hyphen minus -- may enclose a block of text.

There is an alternative where the ending delimiter is an hyphen then a low line _.

21 / 48 2011-03-12 01:19:40

With Novelang default stylesheet, such text is rendered inside a pair of en dash characters

(or em dash depending on language). This creates an interpolated clause. With the ending low

line, there is no visible ending.

See -- interpolated clause -- here.
See -- no visible end -_.

Block of literal inside grave accents

XML element: n:block-of-literal-inside-grave-accents

Two grave accents ` may enclose a block of text containing characters which are not allowed

otherwise (because they serve other Novelang grammar’s purpose).

With Novelang default stylesheet, such text is rendered as normal text:

Almost `4ny- ch@rac7er 0.0.0 "'&#^> / *`

Spaces are handled in a special manner:

- Leading and trailing spaces are trimmed.

- Consecutive spaces between two characters are collapsed into one single space.

- Spaces are replaced by no-break spaces.

With the low line character _ figuring a no-break space, here is a sample of space replacement:

` foo bar ` becomes `foo_bar`

Block of literal inside grave accent pairs

XML element: n:block-of-literal-inside-grave-accent-pairs

Two pairs of grave accents `` may enclose a block of text containing characters which are

not allowed otherwise (because they serve other Novelang grammar’s purpose).

With Novelang default stylesheet, such text is rendered as monospaced text:

Almost ``4ny- ch@rac7er 0.0.0 "'&#^> / *``

Spaces are handled the same way as with block of literal inside grave accents.

Block after tilde

XML elements: n:block-after-tilde, n:subblock

A tilde character ~ may prefix a block of text containing no space nor line break. Inside the

same block there can be other tilde characters.

Considering this source document:

~one(single)~block!

The internal structure looks like this:

22 / 48 2011-03-12 01:19:40

+ n:block-after-tilde
 + n:subblock
 | + "one"
 | + n:block-inside-parenthesis
 | + "single"
 + n:subblock
 + "block"
 + n:punctuation-sign "!"

Subblock may contain:

- Plain words.

- Punctuation signs.

- Block inside grave accents.

- Block inside grave accent pairs.

- Block inside parenthesis.

- Block inside solidus pairs.

When inside block inside solidus pairs, a whitespace must follow the block after tilde:

//~(un)ambiguous //

With Novelang default stylesheet, the subblocks are separated with a zero-width space. This

is fine for overriding whitespace addition for typographic effect(s).

Paragraphs inside angled bracket pairs

XML element: n:paragraphs-inside-angled-bracket-pairs

Two lower-than signs << and two greater-than signs >> may enclose one paragraph or more.

The angled bracket delimiting the paragraphs take place on the first column of the line, and

there must be no other character on the same line.

Whith Novelang default stylesheet, such text is rendered as quoted paragraphs:

<<
First paragraph.

Second paragraph.
>>

List with triple hyphen

XML elements: n:list-with-triple-hyphen, n:paragraph-as-list-item

A triple hyphen --- may start a paragraph, which becomes a list item. The triple hyphen must

take place on the first column of the line. The paragraph as a list item follows the same rules

as a regular paragraph.

With Novelang default stylesheet, such a paragraph is rendered as a list item, preceded by

an em dash character:

23 / 48 2011-03-12 01:19:40

--- First list item.

--- Second list item.

As XML element, the paragraph itself is a n:paragraph-as-list-item, while the sequence

of items gets wrapped into a n:list-with-triple-hyphen element.

List with double hyphen and number sign

XML elements: n:list-with-double-hyphen-and-number-sign, n:paragraph-as-

list-item

A double hyphen and a plus sign --# may start a paragraph, which becomes a list item. They

must take place on the first column of the line. The paragraph as a list item follows the same

rules as a regular paragraph.

With Novelang default stylesheet, such a paragraph is rendered as a numbered list item:

--# First list item.

--# Second list item.

As XML element, the paragraph itself is a n:paragraph-as-list-item, while the sequence

of items gets wrapped into a n:list-with-double-hyphen-and-number-sign element.

Embedded list

XML elements: n:embedded-list-with-hyphen, n:embedded-list-with-number-sign,

n:embedded-list-item

Inside a paragraph, a single hyphen - or a number sign # declares a list item. A list item is

made of one single line (a line break would be interpreted as the end of item). An embedded list

may declare subitems, with a greater indentation than containing item. All items of the same

list have the same leading character (the behavior when mixing them remains undefined at this

time).

With Novelang default stylesheet, the embedded list is rendered as a list, supporting nested

elements (up to 3 levels with PDF, unlimited levels with HTML):

One embedded list:
- Item one.
- Item two.
 - Item two one.
 - Item two two.
- Item three.
And another one, in the same paragraph
Item one.
Item two.
 # Item two one.
End of paragraph.

24 / 48 2011-03-12 01:19:40

As XML elements, the list is wrapped in a n:embedded-list-with-hyphen or n:embedded-

list-with-number-sign, while each item gets wrapped into a n:embedded-list-item

element. Sublists are wrapped the same way.

Lines of literal

XML element: n:lines-of-literal, n:raw-lines

Three lower-than signs <<< and three greater-than signs >>> may enclose one line of literal

text or more. The angled brackets delimiting the paragraphs take place on the first column of

the line, and there must be no other character on the same line.

The literal text may contain any character, including escaped characters and greater-than

signs, as long as they don’t form an ending delimiter (if you need to display that, then use an

escaped character).

With Novelang default stylesheet, such text will be rendered verbatim, with a fixed-width

font:

<<<
Here is literal.
 Indentation will be kept.
>>>

The n:raw-lines element appears wrapped inside the n:lines-of-literal element. Such

an enclosed element is useful as a placeholder for tags.

Word after circumflex accent

XML element: n:word-after-circumflex-accent

A circumflex accent ^ may introduce a word immediately following another word.

With Novelang default stylesheet, the second word is is displayed as superscript:

April, the 1^st.

URL

XML elements: n:url, n:url-literal

A URL is primarily made of URL literal, which starts at the first column of a line, with

nothing else on the same line (except trailing whitespaces).

When the URL literal is preceded by a block inside double quotes, or a block inside square

brackets, it becomes a child of the n:url element.

With Novelang default stylesheet, the external link will show as a hyperlink named “here”:

So you can click "here"
http://novelang.sourceforge.net
.

If the block inside double quotes, or the block inside square brackets must appear verbatim,

then break the relationship by inserting some text element which won’t affect rendering.

25 / 48 2011-03-12 01:19:40

No "name" ` `
http://novelang.sourceforge.net

Tables

XML elements: n:cell-rows-with-vertical-line, n:cell-row, n:cell

A pair of vertical lines delimits a “cell”, which contains words, punctuation signs and various

blocks, but no line break. The first vertical line must appear on the first column.

Several cells can be chained on the same line, using one additional vertical bar each time,

thus forming a cell row.

One cell row, or a sequence of cell rows separated by line breaks, appear wrapped in a

n:cell-rows-with-vertical-line element.

With Novelang default stylesheet, such a sequence of cell rows is arranged as a table:

| row1, col1 | row1, col2 | row1, col3 |
| row2, col1 | row2, col2 | row2, col3 |

Tables behave like paragraphs in the sense they must be separated of other paragraph-like

stuff by a pair of line breaks.

Raster images

XML elements: n:raster-image, n:resource-location, n:image-width, n:image-

height

Raster images are also known as “bitmap” images, which are made of a grid of pixels.

The file path of an image represents the image to appear in the document. It may only appear

as a paragraph (two line breaks separating from other paragraphs), or inside a table cell.

The image must be in JPEG, PNG or GIF format, with the extension being one of .jpg, .png,

.gif respectively.

./orchid.jpg

./flowers/tulip.png

../animals/guinea-pig.jpg

| /images/logo.gif |

The path must start with zero, one, or two full stops, immediately followed by a solidus. Then

follow optional directories, and the file name itself with its extension.

- If the image file is in the same directory as source document, then its name must start with

a full stop and a solidus ./

- Parent directories are referenced through double full stops then solidus ../

- The project directory is considered as the root directory. Attempting to reference a directory

above the project directory will produce an error. A path relative to the project directory (instead

of being relative to the source document) starts with a solidus.

26 / 48 2011-03-12 01:19:40

With Novelang default stylesheet, the image appears inside the document.

Under the n:raster-image element, the n:resource-location gives the image path

relative to the project root. The n:image-width and n:image-height elements give the with

and the height of the image, respectively, in pixel units.

Vector images

XML elements: n:raster-image, n:resource-location

Vector images work the same way as raster images. The image must be in SVG 1. 1 format,

with .svg as extension.

./stars.svg

The with or the height of the vector image is copied from the SVG file, including units.

Coordinates and lengths in SVG are explained here.

SVG documents may reference an external entity with a public identifier like -//W3C//

DTD SVG 1.1" or -//W3C//ENTITIES SVG 1.1 or -//W3C//ELEMENTS SVG 1.1. Other external

entities are not supported yet.

Tags

XML elements: n:explicit-tag, n:promoted-tag, n:implicit-tag

A tag is a textual marker attached to some piece of a source document. It is made of a

commercial at @, immediately followed by letters, digts, and hyphen minus (hyphen minus

may only appear between letters and digits and there cannot be two consecutive ones). The tag

appears immediately before tagged content (no more than one line break separating them).

By now, following Novelang constructs support tags:

- Level.

- Paragraph.

- Paragraph as list item.

- Paragraphs inside angled bracket pairs.

- Cell rows with vertical line.

A tag is not meant to be content by itself, but it may help to categorize the content, or provide

additional information to the stylesheet.

Tags are passed as parameters to the HTTP dæmon or the batch generator, with the tags

argument name, and with a semicolon as delimiter:

my-document.html?tags=TAG-1;TAG-2

With Novelang default stylesheet for HTML, the tags are rendered as tiny colorful floating

rectangles in the right margin. A list of available tags appears in the topright corner in a

disclosure blox. Checking / unchecking tags causes the document to display only tagged text,

by requesting a document with the new URL.

Default stylesheet for PDF doesn’t render tags in a particular manner. But, as expected, if

some text is excluded because it has none of requested tags, it will be excluded from rendition.

http://www.w3.org/TR/SVG/coords.html#UnitIdentifiers

27 / 48 2011-03-12 01:19:40

Tag usage sample:

 @my-tag @Level
== Tagged level

 @my-tag @some-other-tag
My tagged paragraph.

== Level: no explicit tag

The XML structure of source document above looks like this:

+ n:novella
 + n:level
 + n:explicit-tag "my-tag"
 + n:explicit-tag "Level"
 + n:level-title "Tagged level"
 + n:regular-paragraph
 + n:-explicit-tag "my-tag"
 + n:explicit-tag "some-other-tag"
 + "My tagged paragraph."
 + n:level
 + n:promoted-tag "Level"
 + n:implicit-tag "noExplicitTag"
 + n:level-title "Level: no explicit tag"

Level titles may also convert to Implicit Tags or Promoted Tags. Implicit Tags don’t appear in

the Tag list, but filtering on a given Tag retains document fragments tagged with Implicit Tags.

Implicit Tags come out from level title from a few simple transformation rules.

- Convert every letter to its form without diacritics.

- Whitespaces disappear.

- Punctuation signs and delimiters disappear. They become Tag boundaries.

- The first letter of a word that was preceded by another words gets uppercased.

Promoted Tags are Implicit Tags that match some Explicit Tag defined elsewhere in the

document.

Here are a few transformation samples for Implicit (and Promoted) Tags:

Original Novelang source Implicit Tags

This is some text. Be cool. @BeCool @ThisIsSomeText

This is a title... (So what?) @ThisIsATitle @SoWhat

version `0.1.2.3` @version0-1-2-3

Some ``@#!garbage)<--.§``here! @Some-garbage-Here

Identifiers

XML element: n:implicit-identifier, n:explicit-identifier, n:colliding-

explicit-identifier

An identifier is a textual marker identifying a level inside a Novella. The insert command

(explained in “Opus syntax” chapter) recognizes identifiers to insert only given levels. An

identifier starts with a double reverse solidus \\. The rest of the identifier is made of letters,

28 / 48 2011-03-12 01:19:40

digts, and hyphen minus (hyphen minus may only appear between letters and digits and there

cannot be two consecutive ones).

Because often, titles are good candidates for identifiers, they resolve implicitely as identifiers

as long as they are unique. As a result of Novella processing, an identifier may be either explicit

or implicit. All implicit identifiers resolve as absolute ones.

Given following Novella file:

Paragraph 0

 \\One
== Level 1

 \\One-one
=== Level 1.1

Paragraph 1.1

=== Other

Other level (2)

=== Level 1.2

Paragraph 1.2

==== Level 1.2.1

Paragraph 1.2.1

==== Other

Other level (2)

It has:

- 2 explicit identifiers:

- \\One

- \\One-onz

- 3 implicit identifers:

- \\Level-1_2

- \\Level-1_2_1

Implicit identifiers do exist as long as they don’t collide with another identifier. That’s why

Other doesn’t appear as an implicit identifier.

Novelang checks uniqueness of explicit identifiers within the same Novella. Since Novellæ

are created independantly, identifiers may collide when aggregating Novellæ into a single Opus.

With Novelang default HTML stylsheet, colliding identifiers show striked out.

29 / 48 2011-03-12 01:19:40

Escaped characters

For displaying character that have a special meaning in the rendered documents, they must

be escaped. An escaped character is enclosed into a left-pointing double angle quotation mark

« and a right-pointing double angled quotation mark ». The escape code is the unicode name.

HTML entity name is supported as well.

All characters that may appear in a source document are listed in an appendix, along with

their escape codes.

Using those characters is exceptional, however – except in Novelang documentation! – as

most of useful character are accessible as literal.

Comments

Sometimes it is useful to tell Novelang to ignore some lines in a Novella files.

Line comments begin with double percent sign %%.

Blocks comments are delimited by a pair of double accolades {{ and }}.

%% This line is commented.

{{ These two lines are
commented. }}

Opus files

Opus files aggregate novella files. Opus files have the .opus suffix (like NoveLang Opus).

Command: insert

Opus files are useful when there is too much text to fit inside one Novella file. It is also easier

to reorganize small Novellas by changing their order in a Opus file than copy-pasting inside

one big file.

When Novella files become too numerous, Opus files can refer to multiple Novella files at

once. Referring to project layout, here is a well-formed Opus file:

insert file:path/to/myfirstnovella.novella

insert file:path/to/mysecondnovella.novella

When the Novellas are located in the same directory as the Opus file, the single dot notation

(for current directory) is supported:

insert file:.

The recurse option scans novellas in subdirectories.

insert file:. recurse

30 / 48 2011-03-12 01:19:40

The createlevel option adds the content of the file under one new level. The level title is

the filename, path and .novella extension being trimmed.

The nohead option takes effect when using identifiers (explained later). When the identifier

references a level, this options causes the level title to disappear. The nohead option is mutually

exclusive with the createlevel option.

The sort option provides a sorting method when inserting several files.

insert file:. sort=path+

The sort option determines the ordering of Novellas when there are many. Currently

supported values are:

- path+ for ascending sort on path name.

- path- for descending sort on file name.

- version+ for ascending sort on version number.

- version- for descending sort on version number.

Version number if for files names of major.minor.fix.novella format, where major,

minor and fix are positive numbers (this is Novelang’s format for version numbers by the way).

The levelabove option adds the content of the file(s) under the last previously created level.

insert file:some-novella.novella levelabove=2

The style=... assignment adds a STYLE node to each of the trees corresponding to added

novella.

insert file:.
 style=mystyle

Expert users will find this is useful for customizing the output right from an XSLT stylesheet:

<!-- Process styled chapter: -->
<xsl:apply-templates select="//n:chapter[n:style='mystyle']" />

<!-- Don't process styled chapter: -->
<xsl:apply-templates select="//n:chapter[not(n:style!='')]" />

A sequence of composite identifiers (as defined in “Novella syntax” chapter) limits the

insertion of reference Novella to some fragments.

insert file:my-novella \\Some-identifier \\Some-other

Command: mapstylesheet

The “mapstylesheet” command defines a stylesheet for one or more MIME type. Referring to

project layout above, here is the command to insert in opus.opus file in order to render HTML

documents with html-beautiful.xsl and PDF documents with pdf-beautiful.xsl.

31 / 48 2011-03-12 01:19:40

mapstylesheets
 html=html-beautiful.xsl
 pdf=pdf-beautiful.xsl

Internationalization

Novelang aims to support a wide range of languages, at least those with Roman characters.

There are three aspects to consider:

- The character set of the source document(s).

- The character set of the rendered document.

- The characters recognized by Novelang grammar.

Taking advantage of the underlying Java platform, Novelang supports numerous charsets.

See the list.

Source document charset

Source document charset is set at Novelang startup, using --source-charset option

(documented as an HTTP daemon feature).

Reading a source document in a charset which is not the one expected may result into incorrect

character display, and even make the source document unreadable.

Charset mismatch can happen when working across different platforms with different default

charsets. For Western European versions of Mac OS X, MacRoman is operating system’s default

charset, while for Western European versions of Microsoft Windows it is Cp1250.

In order to prevent various headaches, you must be aware of the charset of your source

documents, and use a text editor which is explicit about the charset in use.

Recommended source document charset is UTF-8, which supports a wide range of characters.

Rendered document charset

Rendered document charset is set at Novelang startup, using --rendering-charset option

(documented as an HTTP daemon feature).

The character set of the rendered document makes only sense for text-based formats like

HTML. For HTML, Novelang will do its best to provide named HTML entities (making HTML

source more readable). But, unless you need some special transcoding operation, UTF-8 will

always be great.

PDF don’t care about rendered document charset as it uses Unicode internally. But rendered

document may look wrong with a font that don’t support its characters. Luckily, Novelang

supports a preview of available fonts (with /~fonts.pdf pseudo-document).

Characters in the Novelang grammar

The characters recognized by Novelang are hardcoded in its guts. While Novelang reads and

writes a lot of charsets, only some of the characters in this charset are supported. In order to

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

32 / 48 2011-03-12 01:19:40

keep the Novelang grammar meaningful, it’s not possible to admit any character, especially

symbols and punctuation signs. Letters, like Roman ones with diacritics, will be added on a

case-by-case basis.

By now, Novelang supports all letters of those languages: English, French, Hungarian.

Additional resources about Unicode

— A brief introduction by Joel Spolsky.

— A longer article.

Custom stylesheets

It’s easy to customize rendering of PDF, HTML and plain text because Novelang relies on

FO (Formatting Objects) stylesheets.

Novelang looks for stylesheets in that order:

- In the directories set by --style-dirs option at startup.

- Or in a style directory right under the project directory (from where Novelang was

launched), if the --style-dirs option was not set.

- Finally, inside Novelang’s jars files under the /style directory.

By default Novelang attempts to render final document using the stylesheet with the name of

corresponding format. Otherwise, it uses a default, built-in stylesheet.

MIME type extension .pdf .html
Corresponding default stylesheet pdf.xsl html.xsl

After launching Novelang HTTP daemon, you can use the stylesheet query parameter to

override any other stylesheet name:

http://localhost:8080/chapter-1.html?stylesheet=html-beautiful.xsl

Stylesheets may be defined for a whole Opus as explained later, see the “mapstylesheet”

command.

eXtensible Stylesheet Language

The stylesheets are written in XSL/FO, which stands for eXtensible Stylesheet Language/

Formatting Objects. Both are standards developed by the W3C (World Wide Web Consortium).

The reference documentation is here.

FO may look complex, because typesetting is inherently complex, and because of the lack

of synthetic documentation. So you may be interested by this document explaining importants

FO basics.

You’ll find valuable tutorials on ZVon, Webucator and Dave Pawson’s site.

http://www.joelonsoftware.com/articles/Unicode.html
http://www.cs.tut.fi/~jkorpela/chars.html
http://www.w3.org/TR/xsl
http://web.archive.org/web/20071211215415/http://www.idealliance.org/papers/xml2001papers/tm/WEB/03-05-06/03-05-06.htm
http://zvon.org/xxl/XSLTutorial/Output/index.html
http://www.learn-xsl-fo-tutorial.com
http://www.dpawson.co.uk/xsl/sect3

33 / 48 2011-03-12 01:19:40

XSL reuse

Novelang supports stylesheet reuse with standard xsl:import command. You can reuse

Novelang’s bundled stylesheets:

general-punctuation.xsl
punctuation-FR.xsl
punctuation-US-EN.xsl
default-pdf.xsl
default-html.xsl

Character entities

Novelang stylesheets support inclusion of character entities. This means, you can include

definition of characters which can no be typed verbatim in the stylesheet, like the non-breaking

space.

Such a definition looks like this:

<!ENTITY nbsp " " >

So inside the stylesheet you just have to type “ ” instead of “ ”.

Novelang comes bundled with those files. Here is how to refer them (it’s quite verbose as

XML always is):

<!DOCTYPE doctype [

 <!ENTITY % ISOnum PUBLIC
 "ISO 8879:1986//ENTITIES Numeric and Special Graphic//EN//XML"
 "ISOnum.pen"
 >
 %ISOnum;

 <!ENTITY % ISOpub PUBLIC
 "ISO 8879:1986//ENTITIES Publishing//EN//XML"
 "ISOpub.pen"
 >
 %ISOpub;

 <!ENTITY % ISOlat1 PUBLIC
 "ISO 8879:1986//ENTITIES Added Latin 1//EN//XML"
 "ISOlat1.pen"
 >
 %ISOlat1;

]>

For HTML documents, those entities are automatically HTML-escaped when their system

name starts with ISO 8879:1986//ENTITIES as above.

34 / 48 2011-03-12 01:19:40

Other functions

Java developers can add functions on their own in order to augment standard set of functions

available from an XSL stylesheet. By now there is one, numberAsText which transforms a

number into its textual equivalent. For example, number “43” will become “forty-three”.

In addition to standard namespace declarations, the stylesheet must contain the xalan and

nlx namespaces like below:

<xsl:stylesheet
 version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 xmlns:n="http://novelang.org/book-xml/1.0"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:nlx="xalan://org.novelang.rendering.xslt.Numbering"
>

Here is how to call the numberAsText function:

<xsl:value-of select="nlx:numberAsText(43,'EN','capital')" />

The first parameter is the number itself (could be a standard XSL function like position()

as well). Currently the number must be included in the 0-50 range.

The second parameter is the locale. Currently only EN and FR.

The third parameter is the case. Currently lower, upper and capital are supported.

Look at the complete example in samples/numbering/numbering.xsl in the Novelang

distribution.

Fonts

Novelang PDF generation relies on Apache FOP, which support custom fonts. Every PDF

reader basically supports 14 fonts: serif, sans-serif, monospace, and some symbol fonts. Non-

symbol fonts all come in four flavor: normal, bold, italic, and bold-italic. Not that much fun!

So users are encouraged to set their own fonts.

Font files

Those fonts must be True Type fonts in .ttf files.

Requesting a manual setting of requested fonts may seem an unnecessary burden. On the other

hand, people using publishing tools often complain about a missing font or a broken one, when

importing documents created on another computer. By making fonts a part of a Novelang project

(with same strategy as for content and stylesheets) we expect you to avoid those annoyances.

35 / 48 2011-03-12 01:19:40

Font directories

If there is a directory named fonts right under your project root, it is automatically recognized

as the fonts directory and Novelang attempts to load every file ending by .ttf as a font. This

doesn’t include subdirectories.

You can specify alternate font directories by setting the --font-dirs option at startup.

Directory names are whitespace-separated like this:

--font-dirs fonts/some-fonts fonts/other-fonts

Font list

You can see the list of registered fonts from your browser with following URL:

http://localhost:8080/~fonts.pdf

Turn it on

Inside a XSL-FO stylesheet you set the font-family of a block or an inline element with

the font-family attribute. With the “Bitstream-Vera-Sans” correctly installed you’ll declare

something like this:

<fo:block
 font-family="Bitstream-Vera-Sans"
 ...
>
 ...

Font licensing

All fonts shipping with Novelang are licensed under the GNU Public License. As a

consequence, if you create an electronic document embedding those fonts (precisely what

happens with a PDF) your document becomes GPL-licensed. If this is not the wished behavior,

consider using other fonts.

Hyphenation

Novelang PDF generation relies on Apache FOP, which supports hyphenation. Hyphenation

is language-dependant and has very complex rules. Luckily those rules are already defined for

many languages, unluckily they’re made available under various licenses, most of all being not

compabible with the GNU Public License. That’s the reason why they are not shipped with

Novelang.

36 / 48 2011-03-12 01:19:40

Licensing

First you have to check yourself if the license is compatible with intended usage. Licenses

are explained here.

Download

If there is no licensing issue then download and install the file (s) with your bare hands. All

hyphenation files are available in a single archive here.

Download offo-hyphenation.zip, expand it, and pick the file corresponding to the

language of your need in the hyph directory. Don’t forget to copy the hyphenation.dtd file

(otherwise it won’t work).

Hyphenation directory

If there is a directory named hyphenation right under your project root, it is automatically

recognized as the directory containing hyphenation rules.

You can specify an alternate font directory by setting the novelang.hyphenation.dir

system property.

Turn it on

Inside a XSL-FO stylesheet you set the language of a block with the language attribute

and turn hyphenation on with the hyphenate attribute. You’ll may have to tune hyphenation

by setting hyphenation-push-character-count and hyphenation-remain-character-

count= attributes. With the “FR” rules correctly installed you will declare something like this:

<fo:block
 language="FR"
 hyphenate="true"
 hyphenation-push-character-count="4"
 hyphenation-remain-character-count="4"
 ...
>
 ...

HTTP daemon

Novelang HTTP daemon runs as a Web server and displays documents in a Web browser.

It starts like this:

java -jar $NOVELANG_HOME/lib/Novelang-bootstrap-$VERSION.jar httpdaemon
 [options]

http://offo.sourceforge.net/hyphenation/licenses.html
http://sourceforge.net/project/showfiles.php?group_id=116740&package_id=129569

37 / 48 2011-03-12 01:19:40

The --port option

The --port option sets the TCP port of which the daemon listens to:

--port=8083

Then URL for accessing documents becomes something like:

http://localhost:8083/mydocument.html

The --serve-remotes option

The --serve-remotes option enable serving document for other computers (computer with

an IP address which is not 127.0.0.*). It is not recommended to activate this option because

Novelang is not architectured yet to run as a Web server serving many concurrent requests.

--serve-remotes

Default value is false.

The --content-root option

The --content-root option sets the base directory to another value than current directory:

--content-root=../my-source/documents

The --temporary-dir option

The --temporary-dir option sets where Novelang writes its log files.

--log-temporary temporary-files

Default value is $temporary$.

The --log-dir option

The --log-dir option sets where Novelang writes its log files.

--log-dir logs

Default value is current directory (the value of user.dir system property).

The --font-dirs option

The --font-dirs option sets multiple directories where Novelang looks for fonts.

--font-dirs my/fonts-1 /Users/Shared/Fonts

38 / 48 2011-03-12 01:19:40

The --style-dirs option

The --style-dirs option sets multiple directories where Novelang looks for stylesheets and

related resources. See chapter about stylesheet for details.

--style-dirs my/styles-1 /Users/Shared/Fonts

The --hyphenation-dir option

The --hyphenation-dir option sets where Novelang should attempt to load hyphenation

files from.

--hyphenation-dir my/directory

The --source-charset option

The --source-charset option sets the charset of source documents.

--source-charset MacRoman

Default value is UTF-8.

The --rendering-charset option

The --rendering-charset option sets the charset of rendered documents.

--rendering-charset iso-8859-2

Default value is UTF-8.

Directory listing

You can list the content of a directory by not giving any document name.

This will list every file ending by document source extension (currently “.novella” or

“.opus”), including those in subdirectories. Every subdirectory also appear, even if it contains

none of those files. Document sources become hyperlinks to their HTML form.

Here are samples of valid URLs for directory listings:

http://localhost:8080
http://localhost:8080/
http://localhost:8080/samples
http://localhost:8080/samples/

Because of a known Safari bug, Safari browsers get redirected to a fake page named -.html

but the feature remains the same, however.

39 / 48 2011-03-12 01:19:40

Batch document generator

The batch document generator is a batch tool generating one or more documents at once. A

typical usage is from a shell script. Documents are requested with a path relative to the directory

the batch generator was launched from.

If current directory contains a hello.novella file then following invocation will generate

an HTML file named output/hello.html:

java -jar $NOVELANG_DIR/novelang-VERSION.jar generate
 /hello.html

The --output-dir option

The --output-dir option sets the output directory, where rendered documents are generated

to.

java -jar $NOVELANG_DIR/novelang-VERSION.jar generate
 --output-dir generated/html /hello.html

Default value is output.

The --content-root option

The --content-root option sets the base directory to another value than current directory:

--content-root=../my-source/documents

The --temporary-dir option

The --temporary-dir option sets where Novelang writes its log files.

--log-temporary temporary-files

Default value is $temporary$.

The --log-dir option

The --log-dir option sets where Novelang writes its log files.

--log-dir logs

Default value is current directory (the value of user.dir system property).

The --font-dirs option

The --font-dirs option sets multiple directories where Novelang looks for fonts.

40 / 48 2011-03-12 01:19:40

--font-dirs my/fonts-1 /Users/Shared/Fonts

The --style-dirs option

The --style-dirs option sets multiple directories where Novelang looks for stylesheets and

related resources. See chapter about stylesheet for details.

--style-dirs my/styles-1 /Users/Shared/Fonts

The --hyphenation-dir option

The --hyphenation-dir option sets where Novelang should attempt to load hyphenation

files from.

--hyphenation-dir my/directory

The --source-charset option

The --source-charset option sets the charset of source documents.

--source-charset MacRoman

Default value is UTF-8.

The --rendering-charset option

The --rendering-charset option sets the charset of rendered documents.

--rendering-charset iso-8859-2

Default value is UTF-8.

Level Exploder

The Level Exploder is a batch tool for generating multiple documents from the levels of one

existing document. A typical usage is for slimming down a document that has become too big.

Document is requested with a path relative to the directory the level exploder was launched

from.

If current directory contains a big.novella file with three levels named “one”, “two”

and “three” then following invocation will generate three files named output/one.novella,

output/two.novella and output/three.novella:

41 / 48 2011-03-12 01:19:40

java -jar $NOVELANG_DIR/novelang-VERSION.jar explodelevels
 /big.novella

The --output-dir option

The --output-dir option sets the output directory, where rendered documents are generated

to.

--output-dir exploded

Default value is output.

The --content-root option

The --content-root option sets the base directory to another value than current directory:

--content-root=../my-source/documents

The --temporary-dir option

The --temporary-dir option sets where Novelang writes its log files.

--log-temporary temporary-files

Default value is $temporary$.

The --log-dir option

The --log-dir option sets where Novelang writes its log files.

--log-dir logs

Default value is current directory (the value of user.dir system property).

The --font-dirs option

The --font-dirs option sets multiple directories where Novelang looks for fonts.

--font-dirs my/fonts-1 /Users/Shared/Fonts

The --style-dirs option

The --style-dirs option sets multiple directories where Novelang looks for stylesheets and

related resources. See chapter about stylesheet for details.

--style-dirs my/styles-1 /Users/Shared/Fonts

42 / 48 2011-03-12 01:19:40

The --hyphenation-dir option

The --hyphenation-dir option sets where Novelang should attempt to load hyphenation

files from.

--hyphenation-dir my/directory

The --source-charset option

The --source-charset option sets the charset of source documents.

--source-charset MacRoman

Default value is UTF-8.

The --rendering-charset option

The --rendering-charset option sets the charset of rendered documents.

--rendering-charset iso-8859-2

Default value is UTF-8.

Supported characters

Escape name Alias Hex Dec Preview

«exclamation-mark» u0021 0033 !

«double-quote» u0022 0034 "

«number-sign» u0023 0035 #

«dollar-sign» u0024 0036 $

«percent-sign» u0025 0037 %

«ampersand» «amp» u0026 0038 &

«apostrophe» u0027 0039 '

«left-parenthesis» u0028 0040 (

«right-parenthesis» u0029 0041)

«asterisk» u002a 0042 *

«plus-sign» u002b 0043 +

«comma» u002c 0044 ,

«hyphen-minus» u002d 0045 -

«full-stop» u002e 0046 .

«solidus» u002f 0047 /

«digit-0» u0030 0048 0

43 / 48 2011-03-12 01:19:40

Escape name Alias Hex Dec Preview

«digit-1» u0031 0049 1

«digit-2» u0032 0050 2

«digit-3» u0033 0051 3

«digit-4» u0034 0052 4

«digit-5» u0035 0053 5

«digit-6» u0036 0054 6

«digit-7» u0037 0055 7

«digit-8» u0038 0056 8

«digit-9» u0039 0057 9

«colon» u003a 0058 :

«semicolon» u003b 0059 ;

«less-than-sign» «lt» u003c 0060 <

«equals-sign» u003d 0061 =

«greater-than-sign» «gt» u003e 0062 >

«question-mark» u003f 0063 ?

«commercial-at» u0040 0064 @

«latin-capital-letter-a» u0041 0065 A

«latin-capital-letter-b» u0042 0066 B

«latin-capital-letter-c» u0043 0067 C

«latin-capital-letter-d» u0044 0068 D

«latin-capital-letter-e» u0045 0069 E

«latin-capital-letter-f» u0046 0070 F

«latin-capital-letter-g» u0047 0071 G

«latin-capital-letter-h» u0048 0072 H

«latin-capital-letter-i» u0049 0073 I

«latin-capital-letter-j» u004a 0074 J

«latin-capital-letter-k» u004b 0075 K

«latin-capital-letter-l» u004c 0076 L

«latin-capital-letter-m» u004d 0077 M

«latin-capital-letter-n» u004e 0078 N

«latin-capital-letter-o» u004f 0079 O

«latin-capital-letter-p» u0050 0080 P

«latin-capital-letter-q» u0051 0081 Q

«latin-capital-letter-r» u0052 0082 R

«latin-capital-letter-s» u0053 0083 S

«latin-capital-letter-t» u0054 0084 T

«latin-capital-letter-u» u0055 0085 U

«latin-capital-letter-v» u0056 0086 V

44 / 48 2011-03-12 01:19:40

Escape name Alias Hex Dec Preview

«latin-capital-letter-w» u0057 0087 W

«latin-capital-letter-x» u0058 0088 X

«latin-capital-letter-y» u0059 0089 Y

«latin-capital-letter-z» u005a 0090 Z

«left-square-bracket» u005b 0091 [

«reverse-solidus» u005c 0092 \

«right-square-bracket» u005d 0093]

«circumflex-accent» u005e 0094 ^

«low-line» u005f 0095 _

«grave-accent» u0060 0096 `

«latin-small-letter-a» u0061 0097 a

«latin-small-letter-b» u0062 0098 b

«latin-small-letter-c» u0063 0099 c

«latin-small-letter-d» u0064 0100 d

«latin-small-letter-e» u0065 0101 e

«latin-small-letter-f» u0066 0102 f

«latin-small-letter-g» u0067 0103 g

«latin-small-letter-h» u0068 0104 h

«latin-small-letter-i» u0069 0105 i

«latin-small-letter-j» u006a 0106 j

«latin-small-letter-k» u006b 0107 k

«latin-small-letter-l» u006c 0108 l

«latin-small-letter-m» u006d 0109 m

«latin-small-letter-n» u006e 0110 n

«latin-small-letter-o» u006f 0111 o

«latin-small-letter-p» u0070 0112 p

«latin-small-letter-q» u0071 0113 q

«latin-small-letter-r» u0072 0114 r

«latin-small-letter-s» u0073 0115 s

«latin-small-letter-t» u0074 0116 t

«latin-small-letter-u» u0075 0117 u

«latin-small-letter-v» u0076 0118 v

«latin-small-letter-w» u0077 0119 w

«latin-small-letter-x» u0078 0120 x

«latin-small-letter-y» u0079 0121 y

«latin-small-letter-z» u007a 0122 z

«left-curly-bracket» u007b 0123 {

«vertical-line» u007c 0124 |

45 / 48 2011-03-12 01:19:40

Escape name Alias Hex Dec Preview

«right-curly-bracket» u007d 0125 }

«tilde» u007e 0126 ~

«section-sign» «sect» u00a7 0167 §

«copyright-sign» «copy» u00a9 0169 ©

«left-pointing-double-angle-quotation-
mark»

«laquo» u00ab 0171 «

«registered-sign» «reg» u00ae 0174 ®

«degree-sign» «deg» u00b0 0176 °

«right-pointing-double-angle-quotation-
mark»

«raquo» u00bb 0187 »

«latin-capital-letter-a-with-grave» «Agrave» u00c0 0192 À

«latin-capital-letter-a-with-acute» «Acute» u00c1 0193 Á

«latin-capital-letter-a-with-circumflex» «Acirc» u00c2 0194 Â

«latin-capital-letter-a-with-diaeresis» «Auml» u00c4 0196 Ä

«latin-capital-letter-ae» «AElig» u00c6 0198 Æ

«latin-capital-letter-c-with-cedilla» «Ccedil» u00c7 0199 Ç

«latin-capital-letter-e-with-grave» «Egrave» u00c8 0200 È

«latin-capital-letter-e-with-acute» «Ecute» u00c9 0201 É

«latin-capital-letter-e-with-circumflex» «Ecirc» u00ca 0202 Ê

«latin-capital-letter-e-with-diaeresis» «Euml» u00cb 0203 Ë

«latin-capital-letter-i-with-acute» u00cd 0205 Í

«latin-capital-letter-i-with-circumflex» «Icirc» u00ce 0206 Î

«latin-capital-letter-i-with-diaeresis» «Iuml» u00cf 0207 Ï

«latin-capital-letter-o-with-acute» u00d3 0211 Ó

«latin-capital-letter-o-with-circumflex» «Ocirc» u00d4 0212 Ô

«latin-capital-letter-o-with-diaeresis» «Ouml» u00d6 0214 Ö

«multiplication-sign» «times» u00d7 0215 ×

«latin-capital-letter-u-with-grave» «Ugrave» u00d9 0217 Ù

«latin-capital-letter-u-with-acute» «Ucute» u00da 0218 Ú

«latin-capital-letter-u-with-circumflex» «Ucirc» u00db 0219 Û

«latin-capital-letter-u-with-diaeresis» «Uuml» u00dc 0220 Ü

«latin-small-letter-a-with-grave» «agrave» u00e0 0224 à

«latin-small-letter-a-with-acute» «acute» u00e1 0225 á

«latin-small-letter-a-with-circumflex» «acirc» u00e2 0226 â

«latin-small-letter-a-with-diaeresis» «auml» u00e4 0228 ä

«latin-small-letter-ae» «aelig» u00e6 0230 æ

«latin-small-letter-c-with-cedilla» «ccedil» u00e7 0231 ç

«latin-small-letter-e-with-grave» «egrave» u00e8 0232 è

46 / 48 2011-03-12 01:19:40

Escape name Alias Hex Dec Preview

«latin-small-letter-e-with-acute» «ecute» u00e9 0233 é

«latin-small-letter-e-with-circumflex» «ecirc» u00ea 0234 ê

«latin-small-letter-e-with-diaeresis» «euml» u00eb 0235 ë

«latin-small-letter-i-with-acute» u00ed 0237 í

«latin-small-letter-i-with-circumflex» «icirc» u00ee 0238 î

«latin-small-letter-i-with-diaeresis» «iuml» u00ef 0239 ï

«latin-small-letter-o-with-acute» u00f3 0243 ó

«latin-small-letter-o-with-circumflex» «ocirc» u00f4 0244 ô

«latin-small-letter-o-with-diaeresis» «ouml» u00f6 0246 ö

«latin-small-letter-u-with-grave» «ugrave» u00f9 0249 ù

«latin-small-letter-u-with-acute» «ucute» u00fa 0250 ú

«latin-small-letter-u-with-circumflex» «ucirc» u00fb 0251 û

«latin-small-letter-u-with-diaeresis» «uuml» u00fc 0252 ü

«latin-capital-letter-a-with-breve» «Abreve» u0102 0258 #

«latin-small-letter-a-with-breve» «abreve» u0103 0259 #

«latin-capital-letter-a-with-ogonek» u0104 0260 #

«latin-small-letter-a-with-ogonek» u0105 0261 #

«latin-capital-letter-c-with-acute» u0106 0262 #

«latin-small-letter-c-with-acute» u0107 0263 #

«latin-capital-letter-e-with-breve» «Ebreve» u0114 0276 #

«latin-small-letter-e-with-breve» «Ebreve» u0115 0277 #

«latin-capital-letter-e-with-ogonek» u0118 0280 #

«latin-small-letter-e-with-ogonek» u0119 0281 #

«latin-capital-letter-i-with-breve» «Ibreve» u012c 0300 #

«latin-small-letter-i-with-breve» «ibreve» u012d 0301 #

«latin-capital-letter-l-with-stroke» u0141 0321 #

«latin-small-letter-l-with-stroke» u0142 0322 #

«latin-capital-letter-n-with-acute» u0143 0323 #

«latin-small-letter-n-with-acute» u0144 0324 #

«latin-capital-letter-o-with-double-
acute»

u0150 0336 #

«latin-small-letter-o-with-double-acute» u0151 0337 #

«latin-capital-ligature-oe» «OElig» u0152 0338 Œ

«latin-small-ligature-oe» «oelig» u0153 0339 œ

«latin-capital-letter-s-with-acute» u015a 0346 #

«latin-small-letter-s-with-acute» u015b 0347 #

«latin-capital-letter-s-with-cedilla» «Scedil» u015e 0350 #

«latin-small-letter-s-with-cedilla» «scedil» u015f 0351 #

47 / 48 2011-03-12 01:19:40

Escape name Alias Hex Dec Preview

«latin-capital-letter-t-with-cedilla» «Tcedil» u0162 0354 #

«latin-small-letter-t-with-cedilla» «tcedil» u0163 0355 #

«latin-capital-letter-u-with-breve» «Ubreve» u016c 0364 #

«latin-small-letter-u-with-breve» «ubreve» u016d 0365 #

«latin-capital-letter-u-with-double-
acute»

u0170 0368 #

«latin-small-letter-u-with-double-acute» u0171 0369 #

«latin-capital-letter-z-with-acute» u0179 0377 #

«latin-small-letter-z-with-acute» u017a 0378 #

«latin-capital-letter-z-with-dot-above» u017b 0379 #

«latin-small-letter-z-with-dot-above» u017c 0380 #

«latin-capital-letter-s-with-comma-
below»

u0218 0536 #

«latin-small-letter-s-with-comma-
below»

u0219 0537 #

«latin-capital-letter-t-with-comma-
below»

u021a 0538 #

«latin-small-letter-t-with-comma-
below»

u021b 0539 #

«greek-capital-letter-alpha» «Alpha» u0391 0913 #

«greek-capital-letter-beta» «Beta» u0392 0914 #

«greek-capital-letter-gamma» «Gamma» u0393 0915 #

«greek-capital-letter-delta» «Delta» u0394 0916 #

«greek-capital-letter-epsilon» «Epsilon» u0395 0917 #

«greek-capital-letter-zeta» «Zeta» u0396 0918 #

«greek-capital-letter-eta» «Eta» u0397 0919 #

«greek-capital-letter-theta» «Theta» u0398 0920 #

«greek-capital-letter-iota» «Iota» u0399 0921 #

«greek-capital-letter-kappa» «Kappa» u039a 0922 #

«greek-capital-letter-lambda» «Lambda» u039b 0923 #

«greek-capital-letter-mu» «Mu» u039c 0924 #

«greek-capital-letter-nu» «Nu» u039d 0925 #

«greek-capital-letter-xi» «Xi» u039e 0926 #

«greek-capital-letter-omicron» «Omicron» u039f 0927 #

«greek-capital-letter-pi» «Pi» u03a0 0928 #

«greek-capital-letter-rho» «Rho» u03a1 0929 #

«greek-capital-letter-sigma» «Sigma» u03a3 0931 #

«greek-capital-letter-tau» «Tau» u03a4 0932 #

«greek-capital-letter-upsilon» «Upsilon» u03a5 0933 #

48 / 48 2011-03-12 01:19:40

Escape name Alias Hex Dec Preview

«greek-capital-letter-phi» «Phi» u03a6 0934 #

«greek-capital-letter-chi» «Chi» u03a7 0935 #

«greek-capital-letter-psi» «Psi» u03a8 0936 #

«greek-capital-letter-omega» «Omega» u03a9 0937 #

«greek-small-letter-alpha» «alpha» u03b1 0945 #

«greek-small-letter-beta» «beta» u03b2 0946 #

«greek-small-letter-gamma» «gamma» u03b3 0947 #

«greek-small-letter-delta» «delta» u03b4 0948 #

«greek-small-letter-epsilon» «epsilon» u03b5 0949 #

«greek-small-letter-zeta» «zeta» u03b6 0950 #

«greek-small-letter-eta» «eta» u03b7 0951 #

«greek-small-letter-theta» «theta» u03b8 0952 #

«greek-small-letter-iota» «iota» u03b9 0953 #

«greek-small-letter-kappa» «kappa» u03ba 0954 #

«greek-small-letter-lambda» «lambda» u03bb 0955 #

«greek-small-letter-mu» «mu» u03bc 0956 µ

«greek-small-letter-nu» «nu» u03bd 0957 #

«greek-small-letter-xi» «xi» u03be 0958 #

«greek-small-letter-omicron» «omicron» u03bf 0959 #

«greek-small-letter-pi» «pi» u03c0 0960 #

«greek-small-letter-rho» «rho» u03c1 0961 #

«greek-small-letter-final-sigma» «sigmaf» u03c2 0962 #

«greek-small-letter-sigma» «sigma» u03c3 0963 #

«greek-small-letter-tau» «tau» u03c4 0964 #

«greek-small-letter-upsilon» «upsilon» u03c5 0965 #

«greek-small-letter-phi» «phi» u03c6 0966 #

«greek-small-letter-chi» «chi» u03c7 0967 #

«greek-small-letter-psi» «psi» u03c8 0968 #

«greek-small-letter-omega» «omega» u03c9 0969 #

«right-single-quotation-mark» «lsquo» u2018 8216 ‘

«left-single-quotation-mark» «rsquo» u2019 8217 ’

«single-left-pointing-angle-quotation-
mark»

«lsaquo» u2039 8249 ‹

«single-right-pointing-angle-quotation-
mark»

«rsaquo» u203a 8250 ›

«euro-sign» «euro» u20ac 8364 €

